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On the nature of irreversibility in soluble classical 
systems 

R. DAVIDSOX and J. RAE 
University of Texas at Austin, Austin, Texas, U.S.A. 
M S .  receiced 18th July 1969 

Abstract. We investigate a restricted type of classical Hamiltonian system 
which includes all exactly soluble ones. The Liouville equation is solved 
exactly and an unambiguous expression obtained for a reduced distribution 
function in the thermodynamic limit. I t  is found that this reduced function 
cannot show irreversible behaviour due to the dynamics, although the boundary 
of the system or its initial condition may produce this behaviour. We conclude 
that approximate methods must be used to study dynamical irreversibility in 
Hamiltonian systems. 

1. Introduction 
The main purpose of the theory of non-equilibrium statistical mechanics as de- 

veloped by Prigogine and his co-workers (Prigogine 1962, Resibois 1966) is to look 
for irreversibility, that is, an evolution to a time-independent distribution, coming from 
the purely mechanical basis of the theory. Thus one looks for the source of irrever- 
sibility in particle interactions and not in the containing walls of the system or some 
other stochastic element in the theory. The  formalism as applied to either classical 
or quantum systems is rather complex and normally involves several approximate 
expansions whose range of accuracy is difficult to establish in any general way. It is 
therefore of great interest to apply the methods to problems involving exactly soluble 
models. 

The  problems in classical mechanics which can be solved in closed form are those 
for which the Hamilton-Jacobi equation is separable (Goldstein 1950), and thus for 
which some new coordinates may be found in terms of which there is no longer any 
interaction. It might be conjectured that such systems cannot show irreversibility 
in the above sense even in the limit of a large system and, indeed, it has been shown, at 
least in a formal way (Leaf and Schieve 1967) by operating on the full distribution 
function, which is not strictly defined in this limit, that this is the case. It is possible, 
however, for such systems to exhibit other sorts of irreversibility: for example, an 
infinite chain of linked harmonic oscillators may relax in the sense that the initial 
configuration may disappear and never recur. 

I n  this paper we start from this class of soluble problems and, after emphasizing 
the essential role of boundary conditions, show that when suitable eigenfunctions of 
the Liouville operator exist, the solution to the Liouville equation can be obtained 
exactly. In  order to discuss rigorously the thermodynamic limit, it is necessary to 
introduce reduced distribution functions and examine with some care the interchanges 
of the various limiting processes involved. The  result shows that ‘Hamiltonian 
irreversibility’ is indeed impossible for these systems, while the possibility for ‘initial 
condition irreversibility’ remains. 

2. Specification of the problem 
We consider Hamiltonians H(q ,  P )  describing a system of N degrees of freedom: 
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Irreversibility in soluble classical systems 129 

( P  and q are N-component vectors) for which there exist N first integrals in involu- 
tion, i.e. the Poisson bracket of any pair of the integrals vanishes identically. This 
includes those systems for which the Hamilton-Jacobi equation 

for the characteristic function W is separable in the sense that a W of the form 
N 

w =  c w i  
i = l  

splits the equation into N first-order ordinary differential equations. For such systems 
there exist (Arnold and Avez 1968) canonical variables p, x and Hamiltonian K which 
satisfy the equations of motion: 

with o ( p )  = p/m.  These equations hold for all times. 

evolution is Liouville's equation: 
We describe the system by a distribution function p( x, p, t) whose equation of 

where (..., ...I is the Poisson bracket. In  the coordinates X, p ,  this takes the form 

. 2P 
1 - =  Lp 

at 
where L is the Liouville operator: 

8 
L = -im-lp.--. 

ax 

The  solution of (1) can be written (Prigogine 1962) 

1 
p(t) = exp(iLt)p(O) = dx exp( - izt) -p(O) 

2rri 2-L  (3) 

where y is a contour in the x plane parallel to the real axis and above all singularities 
of the integrand. The operator L must be self-adjoint on the space of distribution 
functions and hence the resolvent operator (x-L)- l  is a bounded operator on this 
space for x not on the real axis (Hille and Phillips 1957). The  time development 
operator exp(iLt) is unitary and therefore also bounded. 

The  possible solutions of the eigenvalue equation 

L$k,pn = hk,pO+k,DO 
are 

(6 is an N-dimensional Dirac delta function), and 
+k,pO = Cexp(ik.x)6(p-po)  (4) 

X k s p 0  = m-lk .pQ. 
I n  order to decide if these possible eigenfunctions are indeed eigenfunctions, it is 
necessary to discuss the nature of the space of distribution functions including some 
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account of the boundary conditions.' We shall take all distribution functions to lie in 
the Hilbert space of square integrable functions of 2 N  variables, this being the 
smallest space which contains reasonable distribution functions and yet has useful 
mathematical properties. I t  is at once clear that the functions (4) cannot, strictly 
speaking, be eigenfunctions, since the delta functions prevent them from being square 
integrable. The Liouville operator has a continuous spectrum which is all of the real 
axis since each component of Po,  and hence &DO, can take any real value. However, 
the components of p are constants of the motion, and so if we choose p ( 0 )  in a sub- 
space defined by definite momenta p ,  p ( t )  will remain in this subspace for all time. 
The  restriction of L to this subspace will have a much smaller spectrum depending 
only on the x-dependent part of (4), which is square integrable over the subspace; 
and we can now proceed. T o  simplify the notation we shall retain the original L and 
the delta functions in the working below. The space of distribution functions is 
further restricted by the choice of boundary conditions. Suppose first that the 
system is defined in a cube 3 (or more generally a rectangular box) in x space given 
by 

-41 < xi < $1 

for each component xi (i = 1 ... N) of x. 

self-adjointness of L,  that is, with the appropriate scalar product 
If we consider functions of the form exp(ik . x) with x lying in this box and use the 

(exp(ik . x), L exp(ik' , x)) = ( L  exp(ik . x), exp(ik' . x)) 

we obtain immediately 

p . (k-k') J' dx exp{i(k'-k) . x} = 0 
cube  

that is 
sin+{l(k, - k,')} -- p I (k-k ' )  n - - 0  

k j -k j '  

where the k, are the components of k. If the components of p are non-zero, the result 
is that k must have the form 

2nn 
1 

k = -  

where n is a set of N integers. Conversely any k of this form will suffice. For the 
cube (or the rectangular box) it appears that L has a complete orthonormal set of 
eigenfunctions which, with the provision above, may be written 

1-A''2 exp(ik . x)6(p-p0) 
and eigenvalues 

In  this case L has a pure point spectrum. The choice of a cube in x space will cor- 
respond in general to very complicated P-dependent boundaries in the original 
phase space of P and Q .  It is usually assumed that since we are ultimately going to 
take the limit of a large system it will not matter what is taken as the boundary of the 
system. There is, however, another reason for making the above choice; namely, 
that any other choice will lead to an incomplete set of eigenfunctions for L. 
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To  see this, let us consider a system defined on a domain 9’ composed of two 
rectangles : 

- g 1 <  x, < 0, 

0 < x, < 61, 

-41 < x, < 41, m = 2, ... N 

-31 < x, <tl, -41’ < x2 < i l l ,  n = 3, ... N 

shown schematically in figure 1. The  self-adjointness condition (5) becomes : 

p . ( k - k ’ ) j d x e x p { i ( k ‘ - k ) . s )  = O  

Figure 1. 

where the integration is now over the domain 9‘. This gives 

sin {$ (k , -k , ‘ ) l }  sin {&(k, - k , ‘ ) l }  
j = 3  kj - k,’ ( K ,  - k l ’ ) (k2  - k 2 ’ )  

x [exp{&i(k, -k,’)l}sin {&(K2-k2’)l}+exp{ - ~ i ( k l - k l ’ ) l ~ s i n { ~ ( k 2 - k 2 ’ ) ~ ’ ~ ]  = 0. 

We apply this condition to two eigenfunctions which differ only in their k, variables 
and then require 

p ,  sin{$(k,-k,’)1}[~1 exp{&i(k, -k , ’ ) l }++ l ’  exp{-&i(k,-k,’)l}] = 0.  

If p ,  # 0, then either 

or 

The  first case imposes 

sin{$(k, -k , ’ ) l )  = 0 (6) 

1exp{~i(k,-k,‘)l}+l‘ exp{-$i(k,-k,’)l} = 0. (7) 

4n7t 
1 

k , - k , ’  = __ for some integer n. 

The second case leads to non-real values of k, -kl’ unless 1 = 1‘. Since we assumed 
that 1 f E’ and since the self-adjoint operator L has only real eigenvalues, the condi- 
tion (7) cannot be satisfied, and (6) must hold. This means that if 1 # I‘ the x, 
dependence of the eigenfunctions is exp(4innx1/l), which yields an incomplete set 
in Q‘. 

,4ny more general domain 9‘‘ can be approximated by a system of rectangles built 
up in this way, and it is clear that the system of resulting eigenfunctions can never be 
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complete. This incompleteness implies that the spectrum of L is no longer a pure 
point spectrum, and it is known (Prigogine 1962) that a continuous spectrum for L 
is at least a necessary condition for irreversible behaviour. This shows that there is a 
possibility of irreversibility due to the choice of the boundary of the system. But, 
since the object of this paper is to look for irreversibility directly from the system 
Hamiltonian, we shall not pursue this interesting line any further here. 

3. The reduced distribution function 
We now consider the solution ( 3 )  of the Liouville equation for a system defined on 

the rectangular domain 9 for which L has a complete orthonormal set of eigenfunc- 
tions, as discussed in the preceding section. The  initial distribution function p(0) is 
expanded in terms of these eigenfunctions as follows 

p(0) = Z - ” i 2  c p(k,po)  exp(ih . x)6(p-po) (8) 
k 

where x has N components and k is summed over the values 2nnll. The  action of the 
time development operator on any eigenfunction is 

We assume throughout the remainder of the paper that p(x, p ,  0) is a continuous 
function of the x. With this provision, the expansion (8) is uniformly comergent 
(Whittaker and Watson 1963) with respect to x in a rectangular domain B6 with 
sides -@+ S Q xi < & I -  6 where 8 can be arbitrarily small. Since we are ultimately 
going to integrate over N- 1 components of x and take the limit of a large system, the 
difference between 9 and B6 is of no consequence. As exp(iLt) is a bounded operator 
in the norm of the Hilbert space of distribution functions, we may operate term by 
term on the infinite series (8) and obtain a series convergent to exp(iLt)p(O). Thus ( 3 )  
may be written 

p ( t )  = Z - N / 2  2 p(k ,po )  exp(-+ ik . s 6(p-po).  1 (9) 
ik . p o t  

m k 

The objects of physical interest, and indeed the only entities meaningful in the 
thermodynamic limit, are the so-called reduced distribution functions, not p(t) itself. 
For simplicity in the remainder of the paper we shall consider the reduced distribution 
function for one degree of freedom only, defined as 

112 1/2 m 

- 112 - 112 - m  -cc 
f(x1, p , ,  t) = g(*Y j d%.. .I dx, Jm dP,... j dPNf(X>P, t) 

= d N ) I  P ( t )  
X P  

where J X  and J p  are the multiple integral operators in this expression and f is normal- 
ized to a function g(N),  the choice of which is postponed to § 4. The analysis which 
follows is easily extended to reduced functions for several degrees of freedom. 

From (9) we obtain an equation forf(t) 

f(t) = g(N)Z-N/2 1 1 2 p(k,po) e x p ( y + i k .  x S(p-po). (10) 
x p k  

I n  order to perform the reduction explicitly it is necessary to interchange the order of 
the integrations and summations in (10). The  integrations J, are purely formal and 
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can be performed at once to give 

j ( t )  = g ( ~ ~ ) Z - A ” z a ( ~ l - p l o ) ~  x k  2 p ( k , p O ) e x p ( F + i k .  x). (11) 

Now, the infinite series in (11) is, apart from the delta function, the Fourier expansion 
of p(t), and is essentially the same series discussed above and found to be uniformly 
convergent with respect to x in g6. Since Jx is over a finite range, it follows (Whit- 
taker and Watson 1963) that we may interchange Jz with the summation in (11) to 
obtain 

(12) 
ik , p o t  

j ( t )  = g(iv)j-“2a(pl -p1o) 2 p(k,po) exp(;) J exp(ik . x). 
k x 

The x integrals are now very simple to perform: for example, 

exp($ik,Z) - exp( - &ik,Z) 
ik, 

where we use k, = 2nn2/l. Thus each Jdx, gives a factor 18k,,o, which takes out most 
of the terms in the summation over k, leaving 

(13) 

0 if k, # 0 
= ( l  if k, := 0 

exp( ik,x,) dx, = 

f(t) = g(iV)1”’2-16(p,-p,o) 2 p(k,, po,(k, = 0)) exp(% +iklx, . 
lc 1 Ot ) 

4. The thermodynamic limit 
We now wish to examine the behaviour of j ( t )  in the limit of a large system, that is 

when N -+ CO and the concentration remains a finite constant. Since the length 1 
defined in 4 2 measures the size of the system in x space and not in the original physi- 
cal space described by Q, it is not necessary that l + CO in this limit. However, in the 
case when I does not tend to infinity the values of k, = 2xnl/Z, which appear in the 
summation in (13) remain discrete. Thus j ( t )  remains a periodic function of t with 
period mZ/plo. The  analogous reduced distribution function for more than one degree 
of freedom will be almost periodic unless the periods associated with these degrees of 
freedom are commensurable. This corresponds to the remark made in $ 2  that a 
discrete spectrum for L cannot lead to irreversible behaviour. We need consider 
therefore only the alternative case when I --f CO as N + CO. Here the variable k, 
becomes continuous in the limit and the summation in (13) can be written as a Rie- 
mann integral if we choose the function g(N) properly as below. 

The  Fourier coefficients in (13) depend on N and 1. Let us rewrite them 

p(k,,PO, (k, = 0)) = 27i.h(N> 1)$(kl) 
where p(kl), apart from possible isolated singularities, is well-behaved as N + CO 

and we have suppressed the dependence on p o  which is constant for the problem. In 
the limit as N -+ CO 

will become an integral over k,. Thus, if we choose ag(N) such that as N (and there- 
fore I) tends to infinity, g(N)P’%(N, 1) tends to a constant c, which is usually chosen 
to be a suitable power of the concentration, the thermodynamic limit of f(t) is well 
defined, For a finite system this choice of g(N)  is clearly just a matter of notation. 
Equation (13) is now 

m 

limf(t) = c6(p,-pIo) 1 dk 
- m  m 
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i; is a function of the continuous real variable K ,  and substituting t = 0 in (14) 
identifies it as the Fourier integral transform of lim f ( O ) ,  the initial reduced distribu- 
tion function. 

As regards the time dependence of limf(t), it is clearly a superposition of exponen- 
tial oscillations whose exact behaviour is determined by the details of the singularities 
of i; in the complex plane of K,. Thus any apparent irreversibility depends on the 
choice of i;, that is on the initial distribution, and not on the dynamics of the system. 
For example, the presence of a simple pole of i; can lead to transient contributions to 
limf(t) which are exponentially damped (compare with Balescu 1963). 

5.  Conclusions 
The classical systems considered in this paper form a very restricted class, namely 

those for which there exist as many integrals in involution as degrees of freedom. 
Xevertheless, this class is important as it includes all problems of classical mechanics 
which are exactly soluble (Goldstein 1950). 

Since we have been interested in examining such systems for possible irreversible 
behaviour arising from the dynamics as specified by the Hamiltonian (Hamiltonian 
irreversibility), we have been forced in this investigation to a very particular choice of 
boundary conditions. The requirements that the Liouville operator L of equation (2) 
be self-adjoint and that it possess a complete set of eigenfunctions are sufficient to 
impose the rectangular boundary conditions we have used. Further, any other choice, 
as we have seen, does not admit such a complete set and so leads to a continuous 
spectrum for L and, consequently, possible irreversible behaviour due to the boundary. 
As remarked in $ 2 ,  our choice does not correspond to walls which might be realized 
in any simple physical way, but none the less it is certainly sufficient in the limit of a 
large system for the study of Hamiltonian irreversibility. In  cases where the physical 
boundaries are important what we have shown therefore is that either these boundary 
effects must be included in the Hamiltonian, which will usually lead to an insoluble 
problem, or else they will coincide with those chosen for mathematical reasons. 
Examples of this latter case are free particles in a physical rectangular box or a bound 
system describable in terms of action and angle variables. 

The thermodynamic limit, as we have treated it in $ 4, is unambiguously defined. 
The procedure used is quite general and is applicable in all cases where the spectrum 
of L becomes continuous in the limit of a large system. The choice of the Hamiltonian 
K in free-particle form means that in these cases the parameter I always tends to 
infinity with N a n d  cannot be maintained at some finite value as would be the case for 
the range of an angle variable. I n  particular, this will be so for a chain of coupled 
harmonic oscillators, although in the usual action-angle variable description the range 
of the angle variables is always 0 to 27r. 

Our analysis seems to show three possible sources of irreversible behaviour for 
reduced distribution functions : 

(i) The  physical boundaries or walls of the systems. 
(ii) The  choice of the initial distribution which may lead to a phase mixing of 

(iii) The  Hamiltonian of the system. 
We have shown in 5 4 that the third case does not arise for the class of Hamiltonians 

considered in this paper. Cases (i) and (iii) are linked mathematically as there is a 
certain amount of choice as to whether physical walls are included directly in the 
Hamiltonian or treated as boundary conditions, but so long as one distinguishes 
physically between a system and its walls the two cases can be separated. The results 
of this paper have been expressed in a special set of canonical coordinates X, p ,  in 
which the distribution functionf(t) does not become time independent for large t. If 
the calculation were performed in another set of variables obtained from x, p by a 

transient contributions. 
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time-independent canonical transformation, it is clear that the resulting reduced 
distribution function would also have this property. However in these new coordinates 
it is not evident that one may now distinguish easily between sources (ii) and (iii) of 
irreversible behaviour. 

I t  appears therefore that any investigation of irreversible behaviour in classical 
Hamiltonian systems must employ approximate methods, as soluble models may show 
only the irreversibility from sources (i) and (ii). Of course, if one abandons the strictly 
mechanical approach starting from a deterministic Hamiltonian, it is possible to 
devise exactly soluble systems which contain an intrinsic stochastic element (see, for 
example, Sutherland 1969). 
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